Project
Digital 3D measurement of wood particles for more efficient materials

Three-dimensional particle measurement and process integration in particleboard production
The properties of particleboard are influenced to a large extent by the geometry of the chips. Targeted control of the board properties therefore requires precise knowledge of these relationships and their adaptability. The accurate and reliable measurement of chips has only recently become possible and will be further developed in this project with practical relevance.
Background and Objective
The production of the chips depends on many factors, e.g. the degree of wear of the knives in the chipper, the initial condition of the wood or the production speed. There is a connection to the properties of the produced board, but also to the consumption of adhesive during production, since the quantity is currently usually calculated on the basis of weight, although the surface area is independent of this. Thus, there is a lack of precise knowledge of the volume-specific information. With the development of a measuring device for three-dimensional size measurement, the shape of the particles can now be reliably determined, but the exact relationship between geometry and board properties is still largely unknown. The production of optimized chips tailored to this can help to significantly reduce the consumption of resources while maintaining the properties of the plate, i.e. to make production more efficient. The goal is self-regulating, high-performance production with significant cost and material savings.
Approach
Depending on the chips produced, the board properties are determined so that the relationship between particle geometry and properties can be represented. At the same time, the adhesive application is adjusted via the volume calculations with the aim of achieving a constant plate quality.
Thünen-Contact

Involved Thünen-Partners
Involved external Thünen-Partners
-
Fagus-GreCon Greten GmbH & Co. KG
(Alfeld, Deutschland) -
Pfleiderer Deutschland GmbH
(Neumarkt, Deutschland)
Funding Body
-
Federal Ministry of Food und Agriculture (BMEL)
(national, öffentlich)
Duration
12.2021 - 8.2025
Publications to the project
- 0
Engehausen N, Benthien JT, Lüdtke J (2024) Einfluss von Spangröße und oberflächenspezifischer Klebstoffmenge auf die Eigenschaften von Spanplatten. In: 15. Holzwerkstoffkolloquium : Auf neuen Wegen ; 14.-15. Dezember 2023 in Dresden. Dresden: Institut für Holztechnologie, pp 52-57
- 1
Engehausen N, Benthien JT, Lüdtke J (2024) Influence of particle size on the mechanical properties of single-layer particleboards. Fibers 12(4):32, DOI:10.3390/fib12040032
- 2
Engehausen N, Benthien JT, Lüdtke J (2023) Voruntersuchungen zur Integration einer 3D-Spanvermessung in den Spanplattenprozess. Braunschweig: Johann Heinrich von Thünen-Institut, 34 p, Thünen Working Paper 210, DOI:10.3220/WP1679988313000
- 3
Benthien JT, Engehausen N, Lüdtke J (2022) 3D-Spanvermessung mit Laser-Profilsensoren : Betrachtung von Technologie, Potenzial im Prozess und Leistungsdaten hinsichtlich der Messkopfauswahl. Holz Zentralbl 148(32):541-543
- 4
Benthien JT, Sieburg-Rockel IJ, Engehausen N, Koch G, Lüdtke J (2022) Analysis of adhesive distribution over particles according to their size and potential savings from particle surface determination. Fibers 10(11):97, DOI:10.3390/fib10110097