Skip to main content
[Translate to English:]
© Thünen-Institut
[Translate to English:]
Institute of

AT Agricultural Technology

Project

Sensor based irrigation control in potatoes



SeBeK Messaufbau Vorversuch
© Thünen-Institut
SeBeK Messaufbau Vorversuch

Sensor based irrigation control in potatoes

Some 25 percent of the German potato production is located in northeast Lower Saxony and uses intensive field irrigation. Can a new sensor system allow more efficient water use?

Background and Objective

Northeast Lower Saxony uses the most intensive field irrigation in the whole Germany. During decades, farmers, consultants and companies have established a profound knowledge which is used mainly for the production of potatoes and sugar beets. Climate change will make irrigation more important in Germany. Water availability and irrigation will become central global topics in the future. In many parts of the world, plant production is impossible without irrigation. But there is an increasing competition amongst diverse water use demands. This leads to the requirement of new innovative approaches with the aim of a sustainable irrigation.

Our project goal is some insight and experience whether the contactless measurement of the canopy temperature is a suitable base for irrigation decisions, and how the technique can be implemented into agricultural operating procedures.

The research project is the innovation project of the "operational group" Sustainable Irrigation which is funded together with the project and coordinated by the Ostfalia University.

Target Group

The project focusses on the potato production in northeast Lower Saxony. The results will however also be relevant for other crops and vegetables, and for other regions in Germany and worldwide.

Approach

The surface temperature of potato canopies and the crop water stress index (CWSI) will be measured in irrigation experiments as well as on real production sites. The measurements will be accompanied by measurements of soil water content, plant growth, relative water content (RWC), leaf water potential (Psi) and the acqusition of colour and thermal images. These data shall help to optimize and to evaluate the CWSI model. The new measurement technique will be integrated and tested in the agricultural operation of a local potato producer.

Thünen-Contact

Dipl.-Inform. Martin Kraft

Telephone
+49 531 2570 1793 / +49 531 596 4140
martin.kraft@thuenen.de

Involved external Thünen-Partners

Funding Body

  • Bundesland Niedersachsen
    (national, öffentlich)

Duration

5.2016 - 12.2019

More Information

Project funding number: 276 03 158 037 0257
Funding program: EU - European Innovation Partnerships (EIP)
Project status: finished

Publications

  1. 0

    Kraft M, Rolfes J, Meinardi D, Riedel A, Röttcher K, Grocholl J, Dittert K (2023) Sensor based irrigation management for potatoes. Braunschweig: Thünen Institute of Agricultural Technology, 2 p, Project Brief Thünen Inst 2023/48a, DOI:10.3220/PB1702892188000

    https://literatur.thuenen.de/digbib_extern/dn067370.pdf

  2. 1

    Kraft M, Rolfes J, Meinardi D, Riedel A, Röttcher K, Grocholl J, Dittert K (2023) Sensorgestützte Beregnungssteuerung in Kartoffeln (SeBeK). Braunschweig: Thünen-Institut für Agrartechnologie, 2 p, Project Brief Thünen Inst 2023/48, DOI:10.3220/PB1702891847000

    https://literatur.thuenen.de/digbib_extern/dn067369.pdf

  3. 2

    Ekinzog EK, Schlerf M, Kraft M, Werner F, Riedel A, Rock G, Mallick K (2022) Revisiting crop water stress index based on potato field experiments in Northern Germany. Agric Water Manag 269:107664, DOI:10.1016/j.agwat.2022.107664

    https://literatur.thuenen.de/digbib_extern/dn065635.pdf

  4. 3

    Meinardi D, Schröder J, Riedel A, Röttcher K, Kraft M, Grocholl J, Dittert K (2021) Sensorgestützte Beregnung von Kartoffeln : Entwicklung des Crop Water Stress Index für Nordostniedersachsen. Braunschweig: Johann Heinrich von Thünen-Institut, 120 p, Thünen Working Paper 179, DOI:10.3220/WP1628164998000

    https://literatur.thuenen.de/digbib_extern/dn063811.pdf

  5. 4

    Zimmermann B, Schlepphorst R, Meinardi D, Kraft M (2019) Mit Sensoren gegen Trockenstress. Top Agrar 46(10):68-71

Funding Body:

Publications on the project

  1. 0

    Wintjen P, Schrader F, Schaap M, Beudert B, Brümmer C (2022) Forest-atmosphere exchange of reactive nitrogen in a remote region - Part I: Measuring temporal dynamics. Biogeosciences 19(2):389-413, DOI:10.5194/bg-19-389-2022

    https://literatur.thuenen.de/digbib_extern/dn064544.pdf

  2. 1

    Wintjen P, Schrader F, Schaap M, Beudert B, Kranenburg R, Brümmer C (2022) Forest-atmosphere exchange of reactive nitrogen in a remote region - Part II: Modeling annual budgets. Biogeosciences 19(22):5287–5311, DOI:10.5194/bg-19-5287-2022

    https://literatur.thuenen.de/digbib_extern/dn065701.pdf

  3. 2

    Lucas-Moffat AM, Schrader F, Herbst M, Brümmer C (2022) Multiple gap-filling for eddy covariance datasets. Agric Forest Meteorol 325(Okt. 2022):109114, DOI:10.1016/j.agrformet.2022.109114

    https://literatur.thuenen.de/digbib_extern/dn065407.pdf

  4. 3

    Brümmer C, Rüffer J, Delorme J-P, Wintjen P, Schrader F, Beudert B, Schaap M, Ammann C (2022) Reactive nitrogen fluxes over peatland and forest ecosystems using micrometeorological measurement techniques. Earth Syst Sci Data 14(2):743-761, DOI:10.5194/essd-14-743-2022

    https://literatur.thuenen.de/digbib_extern/dn064587.pdf

  5. 4

    Brümmer C, Rüffer J, Delorme J-P, Wintjen P, Schrader F, Beudert B, Schaap M, Ammann C (2021) Reactive nitrogen fluxes over peatland (Bourtanger Moor) and forest (Bavarian Forest National Park) using micrometeorological measurement techniques, [Data set, Version 1.0] [Datenpublikation] [online]. 13 Dateien. Genève: Zenodo, zu finden in <https://zenodo.org/record/5841074#.YekbfOcxk2w> [zitiert am 20.01.2022], DOI:10.5281/zenodo.5841074

  6. 5

    Wintjen P, Ammann C, Schrader F, Brümmer C (2020) Correcting high-frequency losses of reactive nitrogen flux measurements. Atmos Measurem Techniques 13(6):2923-2948, DOI:10.5194/amt-13-2923-2020

    https://literatur.thuenen.de/digbib_extern/dn062399.pdf

  7. 6

    Brümmer C, Schrader F, Wintjen P, Zöll U, Schaap M (2020) FORESTFLUX - Standörtliche Validierung der Hintergrunddeposition reaktiver Stickstoffverbindungen : Abschlussbericht [online]. Dessau: Umweltbundesamt, 72 p, Texte UBA 40, zu finden in <https://www.umweltbundesamt.de/publikationen/forestflux-standoertliche-validierung-der> [zitiert am 05.03.2020]

  8. 7

    Zöll U, Lucas-Moffat AM, Wintjen P, Schrader F, Beudert B, Brümmer C (2019) Is the biosphere-atmosphere exchange of total reactive nitrogen above forest driven by the same factors as carbon dioxide? An analysis using artificial neural networks. Atmos Environ 206:108-118, DOI:10.1016/j.atmosenv.2019.02.042

    https://literatur.thuenen.de/digbib_extern/dn060919.pdf

  9. 8

    Schrader F, Schaap M, Zöll U, Kranenburg R, Brümmer C (2018) The hidden cost of using low-resolution concentration data in the estimation of NH3 dry deposition fluxes. Sci Rep 8:969, DOI:10.1038/s41598-017-18021-6

    https://literatur.thuenen.de/digbib_extern/dn059641.pdf

    Scroll to top