Weiter zum Inhalt
Die Messung von Tagesgängen der Kohlenstoffdioxid-Flüsse mit manuellen Hauben startet vor Sonnenaufgang (Großes Moor bei Gifhorn, 04:45 Uhr).
© Thünen-Institut/AK
Die Messung von Tagesgängen der Kohlenstoffdioxid-Flüsse mit manuellen Hauben startet vor Sonnenaufgang (Großes Moor bei Gifhorn, 04:45 Uhr).
Institut für

AK Agrarklimaschutz

Referierte Publikationen von Stefan Burkart

  1. 0

    Grosz BP, Burkart S, Well R (2024) Short-term effect of liquid organic fertilisation and application methods on N2, N2O and CO2 fluxes from a silt loam arable soil. Biol Fertil Soils: Online First, Apr 2024, DOI:10.1007/s00374-024-01814-z

    https://literatur.thuenen.de/digbib_extern/dn068265.pdf

  2. 1

    Zhang B, Zhou M, Zhu B, Kemmann B, Pfülb L, Burkart S, Liu H, Butterbach-Bahl K, Well R (2023) Threshold-like effect of soil NO3- concentrations on denitrification product N2O/(N2O+N2) ratio is mediated by soil pH. Soil Biol Biochem 187:109213, DOI:10.1016/j.soilbio.2023.109213

  3. 2

    Grosz BP, Kemmann B, Burkart S, Petersen S, Well R (2022) Understanding the impact of liquid organic fertilisation and associated application techniques on N2, N2O and CO2 fluxes from agricultural soils. Agriculture 12(5):692, DOI:10.3390/agriculture12050692

    https://literatur.thuenen.de/digbib_extern/dn065119.pdf

  4. 3

    Andrino A, Guggenberger G, Sauheitl L, Burkart S, Boy J (2021) Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza. Biol Fertil Soils 57:47-64, DOI:10.1007/s00374-020-01505-5

    https://literatur.thuenen.de/digbib_extern/dn062830.pdf

  5. 4

    Senbayram M, Well R, Shan J, Bol R, Burkart S, Jones DL, Wu D (2020) Rhizosphere processes in nitrate-rich barley soil tripled both N2O and N2 losses due to enhanced bacterial and fungal denitrification. Plant Soil 448:509-522, DOI:10.1007/s11104-020-04457-9

  6. 5

    Well R, Burkart S, Giesemann A, Grosz BP, Köster JR, Lewicka-Szczebak D (2019) Improvement of the 15N gas flux method for in situ measurement of soil denitrification and its product stoichiometry. Rapid Comm Mass Spectrometry 33(5):437-448, DOI:10.1002/rcm.8363

  7. 6

    Manderscheid R, Erbs M, Burkart S, Wittich K-P, Löpmeier F-J, Weigel H-J (2016) Effects of free-air carbon dioxide enrichment on sap flow and canopy microclimate of maize grown under different water supply. J Agron Crop Sci 202(4):255-268, DOI:10.1111/jac.12150

  8. 7

    Leiber-Sauheitl K, Fuß R, Burkart S, Buegger F, Dänicke S, Meyer U, Petzke KJ, Freibauer A (2015) Sheep excreta cause no positive priming of peat-derived CO2 and N2O emissions. Soil Biol Biochem 88:282-293, DOI:10.1016/j.soilbio.2015.06.001

    https://literatur.thuenen.de/digbib_extern/dn055291.pdf

  9. 8

    Burkart S, Bender J, Tarkotta B, Faust S, Castagna A, Ranieri A, Weigel H-J (2013) Effects of ozone on leaf senescence, photochemical efficiency and grain yield in two winter wheat cultivars. J Agron Crop Sci 199:275-285, DOI:10.1111/jac.12013

  10. 9

    Burkart S, Manderscheid R, Wittich K-P, Löpmeier F-J, Weigel H-J (2011) Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. Plant Biol 13(2):258-269

  11. 10

    Grünhage L, Lehmann Y, Schröder M, Braden H, Bender J, Burkart S (2011) Evaluation of the ozone-related risk for winter wheat at local scale with the CRO3PS model. Gefahrstoffe Reinhaltung Luft 71(3):90-97

  12. 11

    Burkart S, Manderscheid R, Weigel H-J (2009) Canopy CO2 exchange of sugar beet under different CO2 concentrations and nitrogen supply: results from a free-air CO2 enrichment study. Plant Biol 11(Suppl. 1):109-123, DOI:10.1111/j.1438-8677.2009.00240.x

  13. 12

    Burkart S, Manderscheid R, Weigel H-J (2007) Design and performance of a portable gas exchange chamber system for CO2- and H2O-flux measurements in crop canopies. Environ Exp Bot 61(1):25-34

  14. 13

    Weigel H-J, Pacholski AS, Waloszczyk K, Frühauf C, Manderscheid R, Anderson T-H, Heinemeyer O, Kleikamp B, Helal M, Burkart S, Schrader S, Sticht C, Giesemann A (2006) Zur Wirkung erhöhter atmosphärischer CO2-Konzentrationen auf Wintergerste, Zuckerrübe und Winterweizen in einer Fruchtfolge : Beispiele aus dem Braunschweiger Kohlenstoffprojekt. Landbauforsch Völkenrode 56(3-4):101-115

    https://literatur.thuenen.de/digbib_extern/bitv/zi040336.pdf

  15. 14

    Weigel H-J, Pacholski AS, Burkart S, Helal M, Heinemeyer O, Kleikamp B, Manderscheid R, Frühauf C, Hendrey GF, Lewin K, Nagy J (2005) Carbon turnover in a crop rotation under free air CO2 enrichment (FACE). Pedosphere 15(6):728-738

  16. 15

    Schaaf S, Dämmgen U, Grünhage L, Burkart S (2005) The assessment of water vapour and carbon dioxide fluxes above arable crops - a comparison of methods. Meteorol Z 14(2):151-155, DOI:10.1127/0941-2948/2005/0016

  17. 16

    Burkart S, Manderscheid R, Weigel H-J (2004) Interactive effects of elevated CO2-concentrations and plant available water content on canopy evapotranspiration and conductance of spring wheat. Eur J Agron 21(4):401-417, DOI:10.1016/j.eja.2004.07.003

  18. 17

    Manderscheid R, Burkart S, Bramm A, Weigel H-J (2003) Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. Eur J Agron 19(3):411-425, DOI:10.1016/S1161-0301(02)00133-8

  19. 18

    Rodriguez D, Ewert F, Goudriaan J, Manderscheid R, Burkart S, Weigel H-J (2001) Modelling the response of wheat canopy assimilation to atmospheric CO2 concentrations. New Phytol 150(2):337-346

  20. 19

    Burkart S, Manderscheid R, Weigel H-J (2000) Interacting effects of photosynthetic photon flux density and temperature on canopy CO2 exchange rate of spring wheat under different CO2 concentrations. J Plant Physiol 157:31-39

    Nach oben