Weiter zum Inhalt
Unterschiedliche Baumsaaten werden in Händen gehalten, darunter Zapfen und Bucheckern
© Bernd Degen
Unterschiedliche Baumsaaten werden in Händen gehalten, darunter Zapfen und Bucheckern
Institut für

FG Forstgenetik

Malte Mader


Institut für Forstgenetik

Sieker Landstraße 2
22927 Großhansdorf
Telefon
+49 4102 696 106
Fax
+49 4102 696 200
E-Mail
malte.mader@thuenen.de

Mitarbeiter im Arbeitsbereich Genomforschung, Schwerpunkt Bioinformatik


2003 - 2008 Studium der Informatik und Bioinformatik an der Universität Hamburg

2008 - 2013 Wissenschaftlicher Mitarbeiter am Zentrum für Bioinformatik (Abteilung Genominformatik) der Universität Hamburg und dem Institut für Pathologie des Universitätsklinikums Hamburg-Eppendorf in einem Projekt zur Entwicklung einer web-basierten Software für die integrative Visualisierung genomischer Daten in der Krebsforschung.

Seit 2014 Wissenschaftlicher Mitarbeiter am Thünen-Institut für Forstgenetik

Fachliches Profil:

  • Auswertung von Sequenzierungsdaten der nächsten Generation
  • Software- und Datenbank-Entwicklung
  •  Visualisierung genomischer Daten
  • Linux-Systemadministration

Aktuelle Projekte:  

 

Abgeschlossene Projekte

  • Herkunft Neues Testverfahren zur Bestimmung der Herkunft von forstlichem Vermehrungsgut in Europa
  • Genomanalyse bei Bäumen
  • Fichte-Trockenheit Trockenheitsgefährdung und Anpassungspotenzial unterschiedlicher Fichtenpopulationen
  • GenMon Einrichtung eines genetischen Monitorings für Buche und Fichte in Deutschland zur Bewertung der genetischen Anpassungsfähigkeit der Baumarten gegenüber Umweltveränderungen
  • Large Scale Großflächiger Aufbau von genetischen Referenzdaten zur Holzherkunftsbestimmung

 

 

 

Publikationen

  1. 0

    Schröder H, Mader M, Orgel F, Nosenko T, Schnitzler JP, Kersten B (2024) Gene expression profile of the herbivore-induced stress responses in Quercus robur. In: Botanik-Tagung : International Conference of the German Society for Plant Sciences, 15-19 September 2024, Halle/Saale ; Programme. p 306

    https://literatur.thuenen.de/digbib_extern/dn069267.pdf

  2. 1

    Mader M, Schröder H, Nosenko T, Schnitzler JP, Orgel F, Kersten B (2024) Genexpressionsanalysen zur Untersuchung von Herbivorie-induziertem Stress in Eichen. In: Liesebach M, Tröber U, Neophytou C (eds) 8. Tagung der Sektion Forstgenetik/Forstpflanzenzüchtung "Wald der Zukunft - Beitrag von Forstgenetik und Forstpflanzenzüchtung" : Freiburg, 11. bis 13. September 2024 ; Abstract-Band und Exkursionsführer. p 17

  3. 2

    Lazic D, Geßner C, Liepe KJ, Lesur-Kupin I, Mader M, Blanc-Jolivet C, Gömöry D, Liesebach M, González-Martínez SC, Fladung M, Degen B, Müller NA (2024) Genomic variation of a keystone forest tree species reveals signals of local adaptation despite high levels of phenotypic plasticity [Preprint]. Cold Spring Harbor: bioRxiv, 20 p, DOI:10.1101/2023.05.11.540382

    https://literatur.thuenen.de/digbib_extern/dn068472.pdf

  4. 3

    Müller NA, Geßner C, Mader M, Blanc-Jolivet C, Fladung M, Degen B (2024) Genomic variation of European beech across its distribution range reveals patterns of local adaptation and future maladaptation. In: Forests & society towards 2050 : 26th IUFRO World Congress, Stockholm, Sweden, 23-29 June 2024 ; Book of abstracts. p 2218

    https://literatur.thuenen.de/digbib_extern/dn068715.pdf

  5. 4

    Lazic D, Geßner C, Liepe KJ, Lesur-Kupin I, Mader M, Blanc-Jolivet C, Gömöry D, Liesebach M, González-Martínez SC, Fladung M, Degen B, Müller NA (2024) Genomic variation of European beech reveals signals of local adaptation despite high levels of phenotypic plasticity. Nature Comm 15:8553, DOI:10.1038/s41467-024-52933-y

    https://literatur.thuenen.de/digbib_extern/dn068915.pdf

  6. 5

    Capo LFM, Degen B, Blanc-Jolivet C, Tysklind N, Cavers S, Mader M, Meyer-Sand BRV, Paredes-Villanueva K, Honorio Coronado EN, Garcia-Davila CR, Troispoux V, Delcamp A, Sebbenn AM (2024) Timber tracking of Jacaranda copaia from the Amazon Forest using DNA fingerprinting. Forests 15(8):1478, DOI:10.3390/f15081478

    https://literatur.thuenen.de/digbib_extern/dn068996.pdf

  7. 6

    Carvalho C, de Lima HC, Lemes MR, Zartman CE, van den Berg C, Garcia-Davila CR, Honorio Coronado EN, Mader M, Paredes-Villanueva K, Tysklind N, Cardoso D (2023) A dated phylogeny of the Neotropical Dipterygeae clade reveals 30 million years of winged papilionate floral conservatism in the otherwise florally labile early-branching papilionoid legumes. Bot J Linn Soc 202(4):449-475, DOI:10.1093/botlinnean/boad003

  8. 7

    Mader M, Liesebach H, Kersten B (2023) Drought stress-induced Picea abies transcriptome changes in the context of functional interactions. Silvae Genetica 72(1):163-175, DOI:10.2478/sg-2023-0017

    https://literatur.thuenen.de/digbib_extern/dn067138.pdf

  9. 8

    Mader M, Kersten B (2023) Drought stress-induced transcriptome modulations in Picea abies needles [Datenpublikation] [online]. 6 SRA Experiments, 6 BioSamples, 68 Gb. Bethesda: NCBI National Center for Biotechnology Information, zu finden in <https://www.ncbi.nlm.nih.gov/bioproject/PRJNA912094> [zitiert am 01.11.2023]

  10. 9

    Degen B, Blanc-Jolivet C, Mader M, Yanbaeva V, Yanbaev Y (2023) Introgression as an important driver of geographic genetic differentiation within European white oaks. Forests 14(12):2279, DOI:10.3390/f14122279

    https://literatur.thuenen.de/digbib_extern/dn067236.pdf

  11. 10

    Mader M, Blanc-Jolivet C, Kersten B, Liesebach H, Degen B (2022) A novel and diverse set of SNP markers for rangewide genetic studies in Picea abies. Conserv Genet Resources 14(3):267-270, DOI:10.1007/s12686-022-01276-1

    https://literatur.thuenen.de/digbib_extern/dn064912.pdf

  12. 11

    Blanc-Jolivet C, Mader M, Liesebach H, Kersten B, Degen B (2022) A set of nuclear SNP loci derived from single sample double digest RAD and from pool sequencing for large-scale genetic studies in the European beech Fagus sylvatica. Conserv Genet Resources 14(2):151-153, DOI:10.1007/s12686-022-01256-5

    https://literatur.thuenen.de/digbib_extern/dn065716.pdf

  13. 12

    Degen B, Yanbaev Y, Ianbaev R, Blanc-Jolivet C, Mader M, Bakhtina S (2022) Large-scale genetic structure of Quercus robur in its eastern distribution range enables assignment of unknown seed sources. Forestry 95(4):531-547, DOI:10.1093/forestry/cpac009

  14. 13

    Degen B, Blanc-Jolivet C, Bakhtina S, Ianbaev R, Yanbaev YA, Mader M, Nürnberg S, Schröder H (2021) Applying targeted genotyping by sequencing with a new set of nuclear and plastid SNP and indel loci for Quercus robur and Quercus petraea. Conserv Genet Resources 13:345-347, DOI:10.1007/s12686-021-01207-6

    https://literatur.thuenen.de/digbib_extern/dn063676.pdf

  15. 14

    Bolte A, Sanders TGM, Natkhin M, Czajkowski T, Chakraborty T, Liesebach H, Kersten B, Mader M, Liesebach M, Lenz C, Lautner S, Löffler S, Kätzel R (2021) Coming from dry regions Norway spruce seedlings suffer less under drought. Eberswalde: Thünen Institute of Forest Ecosystems, 2 p, Project Brief Thünen Inst 2021/16a, DOI:10.3220/PB1623066406000

    https://literatur.thuenen.de/digbib_extern/dn063677.pdf

  16. 15

    Blanc-Jolivet C, Mader M, Bouda ZH-N, Massot M, Dainou K, Yene G, Opuni-Frimpong E, Degen B (2021) Development of new SNP and INDEL loci for the valuable African timber species Lophira alata. Conserv Genet Resources 13:85-87, DOI:10.1007/s12686-020-01173-5

    https://literatur.thuenen.de/digbib_extern/dn063410.pdf

  17. 16

    Degen B, Yanbaev YA, Blanc-Jolivet C, Ianbaev R, Bakhtina S, Mader M (2021) Genetic comparison of planted and natural Quercus robur stands in Russia. Silvae Genetica 70:1-8, DOI:10.2478/sg-2021-0001

    https://literatur.thuenen.de/digbib_extern/dn063194.pdf

  18. 17

    Degen B, Yanbaev YA, Mader M, Ianbaev R, Bakhtina S, Schröder H, Blanc-Jolivet C (2021) Impact of gene flow and introgression on the range wide genetic structure of Quercus robur (L.) in Europe. Forests 12:1425, DOI:10.3390/f12101425

    https://literatur.thuenen.de/digbib_extern/dn064066.pdf

  19. 18

    Bolte A, Sanders TGM, Natkhin M, Czajkowski T, Chakraborty T, Liesebach H, Kersten B, Mader M, Liesebach M, Lenz C, Lautner S, Löffler S, Kätzel R (2021) Junge Fichten aus trockenen Regionen leiden weniger unter Trockenstress. Eberswalde: Thünen-Institut für Waldökosysteme, 2 p, Project Brief Thünen Inst 2021/16, DOI:10.3220/PB1622452332000

    https://literatur.thuenen.de/digbib_extern/dn063652.pdf

  20. 19

    Müller NA, Kersten B, Leite Montalvao AP, Mähler N, Bernhardsson C, Bräutigam K, Carracedo Lorenzo Z, Hönicka H, Kumar V, Mader M, Pakull B, Robinson KM, Sabatti M, Vettori C, Ingvarsson PK, Cronk Q, Street NR, Fladung M (2020) A single gene underlies the dynamic evolution of poplar sex determination. Nat Plants 6:630-637, DOI:10.1038/s41477-020-0672-9

  21. 20

    Müller NA, Kersten B, Leite Montalvao AP, Hönicka H, Mader M, Pakull B, Fladung M (2020) A single gene underlies the dynamic evolution of poplar sex determination [Datenpublikation] [online]. , zu finden in <https://www.ncbi.nlm.nih.gov/bioproject/PRJNA542603/> [zitiert am 05.08.2020]

  22. 21

    Blanc-Jolivet C, Bakhtina S, Yanbaev R, Yanbaev YA, Mader M, Guichoux E, Degen B (2020) Development of new SNPs loci on Quercus robur and Quercus petraea for genetic studies covering the whole species’ distribution range. Conserv Genet Resources 12:597-600, DOI:10.1007/s12686-020-01141-z

  23. 22

    Pakull B, Schindler L, Mader M, Kersten B, Blanc-Jolivet C, Paulini M, Lemes MR, Ward S, Navarro CM, Cavers S, Sebbenn AM, Dio Odi, Guichoux E, Degen B (2020) Development of nuclear SNP markers for Mahogany (Swietenia spp.). Conserv Genet Resources 12:585-587, DOI:10.1007/s12686-020-01162-8

    https://literatur.thuenen.de/digbib_extern/dn063132.pdf

  24. 23

    Blanc-Jolivet C, Mader M, Bouda ZH-N, Guichoux E, Yene G, Opuni-Frimpong E, Degen B (2020) Development of SNP markers for the African timber species Nauclea diderrichii. Conserv Genet Resources 12:357-359, DOI:10.1007/s12686-019-01115-w

  25. 24

    Kersten B, Schott T, Mader M (2020) Fagus sylvatica isolate FASYL_29_1 mitochondrion, complete genome [Datenpublikation] [online]. , zu finden in <https://www.ncbi.nlm.nih.gov/nuccore/MT446430> [zitiert am 02.10.2020]

  26. 25

    Mader M, Schröder H, Schott T, Schöning-Stierand K, Leite Montalvao AP, Liesebach H, Liesebach M, Fussi B, Kersten B (2020) Mitochondrial genome of Fagus sylvatica L. as a source for taxonomic marker development in the Fagales. Plants(9):1274, DOI:10.3390/plants9101274

    https://literatur.thuenen.de/digbib_extern/dn062680.pdf

  27. 26

    Mader M, Kersten B (2020) Mitochondrial genome of Fagus sylvatica L. as a source for taxonomic marker development in the Fagales [Datenpublikation] [online]. , zu finden in <https://www.ncbi.nlm.nih.gov/bioproject/PRJNA648273/> [zitiert am 02.10.2020]

  28. 27

    Garcia-Davila CR, Aldana Gomero D, Renno J-F, Diaz Soria R, Hidalgo Pizango G, Flores Llampazo G, Castro-Ruiz D, Mejia de Loayza E, Angulo Chavez C, Mader M, Tysklind N, Paredes-Villanueva K, del Castillo Torres D, Degen B, Honorio Coronado EN (2020) Molecular evidence for three genetic species of Dipteryx in the Peruvian Amazon. Genetica 148:1-11, DOI:10.1007/s10709-019-00082-2

  29. 28

    Paredes-Villanueva K, Blanc-Jolivet C, Mader M, Honorio Coronado EN, Garcia-Davila CR, Sebbenn AM, Meyer-Sand BRV, Caron H, Tysklind N, Cavers S, Degen B (2020) Nuclear and plastid SNP markers for tracing Cedrela timber in the tropics. Conserv Genet Resources 12:239-244, DOI:10.1007/s12686-019-01110-1

  30. 29

    Honorio Coronado EN, Blanc-Jolivet C, Mader M, Garcia-Davila CR, Aldana Gomero D, del Castillo Torres D, Flores Llampazo G, Hidalgo Pizango G, Sebbenn AM, Meyer-Sand BRV, Paredes-Villanueva K, Tysklind N, Troispoux V, Massot M, Carvalho C, de Lima HC, Cardoso D, Degen B (2020) SNP markers as a successful molecular tool for assessing species identity and geographic origin of trees in the economically important South American legume genus Dipteryx. J Heredity 111(4):346-356, DOI:10.1093/jhered/esaa011

  31. 30

    Tysklind N, Blanc-Jolivet C, Mader M, Meyer-Sand BRV, Paredes-Villanueva K, Honorio Coronado EN, Garcia-Davila CR, Sebbenn AM, Caron H, Troispoux V, Guichoux E, Degen B (2019) Development of nuclear and plastid SNP and INDEL markers for population genetic studies and timber traceability of Carapa species. Conserv Genet Resources 11(3):337-339, DOI:10.1007/s12686-019-01090-2

  32. 31

    Honorio Coronado EN, Blanc-Jolivet C, Mader M, Garcia-Davila CR, Sebbenn AM, Meyer-Sand BRV, Paredes-Villanueva K, Tysklind N, Troispoux V, Massot M, Degen B (2019) Development of nuclear and plastid SNP markers for genetic studies of Dipteryx tree species in Amazonia. Conserv Genet Resources 11(3):333-336, DOI:10.1007/s12686-019-01081-3

  33. 32

    Mader M, Kersten B (2019) Fagus sylvatica chloroplast, complete genome [Datenpublikation] [online]. , zu finden in <https://www.ncbi.nlm.nih.gov/nuccore/NC_041437.1> [zitiert am 14.05.2019]

  34. 33

    Brenner WG, Mader M, Müller NA, Hönicka H, Schröder H, Zorn I, Fladung M, Kersten B (2019) High level of conservation of mitochondrial RNA editing sites among four Populus species. G3 Genes Genomes Genetics 9:709-717, DOI:10.1534/g3.118.200763

    https://literatur.thuenen.de/digbib_extern/dn060912.pdf

  35. 34

    Brenner WG, Mader M, Müller NA, Hönicka H, Schröder H, Zorn I, Fladung M, Kersten B (2019) High level of conservation of mitochondrial RNA editing sites among four Populus species [Datenpublikation] [online]. , zu finden in <https://www.ncbi.nlm.nih.gov/bioproject/?term=(PRJNA514029)%20AND%20bioproject_sra[filter]%20NOT%20bioproject_gap[filter]> [zitiert am 12.02.2019]

  36. 35

    Chaves CL, Blanc-Jolivet C, Sebbenn AM, Mader M, Meyer-Sand BRV, Paredes-Villanueva K, Honorio Coronado EN, Garcia-Davila CR, Tysklind N, Troispoux V, Massot M, Degen B (2019) Nuclear and chloroplastic SNP markers for genetic studies of timber origin for Hymenaea trees. Conserv Genet Resources 11(3):329-331, DOI:10.1007/s12686-018-1077-1

  37. 36

    Sebbenn AM, Blanc-Jolivet C, Mader M, Meyer-Sand BRV, Paredes-Villanueva K, Honorio Coronado EN, Garcia-Davila CR, Tysklind N, Troispoux V, Delcamp A, Degen B (2019) Nuclear and plastidial SNP and INDEL markers for genetic tracking studies of Jacaranda copaia. Conserv Genet Resources 11(3):341-343, DOI:10.1007/s12686-019-01097-9

  38. 37

    Mader M, Liesebach H, Liesebach M, Kersten B (2019) The complete chloroplast genome sequence of Fagus sylvatica L. (Fagaceae). Mitochondrial DNA Part B 4(1):1818-1819, DOI:10.1080/23802359.2019.1612712

    https://literatur.thuenen.de/digbib_extern/dn060997.pdf

  39. 38

    Chaves CL, Degen B, Pakull B, Mader M, Honorio E, Ruas P, Tysklind N, Sebbenn AM (2018) Assessing the ability of chloroplast and nuclear DNA gene markers to verify the geographic origin of Jatoba (Hymenaea courbaril L.) timber. J Heredity 109(5):543-552, DOI:10.1093/jhered/esy017

  40. 39

    Mader M, Pakull B, Blanc-Jolivet C, Paulini-Drewes M, Bouda ZH-N, Degen B, Small I, Kersten B (2018) Complete chloroplast genome sequences of four Meliaceae species and comparative analyses. Int J Mol Sci 19(3):701, DOI:10.3390/ijms19030701

    https://literatur.thuenen.de/digbib_extern/dn059780.pdf

  41. 40

    Meyer-Sand BRV, Blanc-Jolivet C, Mader M, Paredes-Villanueva K, Tysklind N, Sebbenn AM, Guichoux E, Degen B (2018) Development of a set of SNP markers for population genetics studies of Ipe (Handroanthus sp.), a valuable tree genus from Latin America. Conserv Genet Resources 10(4):779-781, DOI:10.1007/s12686-017-0928-5

  42. 41

    Kersten B, Mader M, Müller NA, Fladung M, Degen B, Liesebach M, Liesebach H (2018) Genome-wide scan for diagnostic markers for bud burst in beech. In: Di Filippo A, Madsen P, Matsui T, Pederson N, Piovesan G, Sagheb-Talebi K (eds) 11th International Beech Symposium "Natural and managed beech forests as reference ecosystems for the sustainable management of forest resources and the conservation of biodiversity", 18-21 September 2018 ; International Union of Forest Research Organizations (IUFRO) Group 1.01.07 - "Ecology and Silviculturae of Beech". Viterbo: IUFRO, p 14

  43. 42

    Kersten B, Mader M, Müller NA, Schröder H, Pakull B, Blanc-Jolivet C, Liesebach H, Liesebach M, Degen B, Fladung M (2017) Application of NGS to develop molecular markers for monitoring and selection purposes in the context of climate change. In: International Union of Forest Research Organizations (ed) IUFRO 125th anniversary congress 2017 : 18-22 September 2017, Freiburg, Germany.

  44. 43

    Mader M, Kersten B, Pakull B, Blanc-Jolivet C, Degen B (2016) Assembly of tropical tree chloroplast genomes from NGS genome skimming data. In: 4th Plant Genomics Congress : Poster Presentation Abstract ; London, UK ; 9.5.2016-10.5.2016. London, p 21

  45. 44

    Schröder H, Cronn R, Yanbaev YA, Jennings T, Mader M, Degen B, Kersten B (2016) Development of molecular markers for determining continental origin of wood from White Oaks (Quercus L. sect. Quercus). PLoS One 11(6):e0158221, DOI:10.1371/journal.pone.0158221

    https://literatur.thuenen.de/digbib_extern/dn056903.pdf

  46. 45

    Pakull B, Mader M, Kersten B, Ekue MRM, Bouka Dipelet UG, Paulini M, Bouda ZH-N, Degen B (2016) Development of nuclear, chloroplast and mitochondrial SNP markers for Khaya sp.. Conserv Genet Resources 8(3):293-297, DOI:10.1007/s12686-016-0557-4

  47. 46

    Kersten B, Faivre Rampant P, Mader M, Le Paslier M-C, Bounon R, Berard A, Vettori C, Schröder H, Leplé J-C, Fladung M (2016) Genome sequences of Populus tremula chloroplast and mitochondrion: Implications for holistic poplar breeding. PLoS One 11(1):e0147209, DOI:10.1371/journal.pone.0147209

    https://literatur.thuenen.de/digbib_extern/dn056232.pdf

  48. 47

    Schröder H, Cronn R, Yanbaev YA, Jennings T, Mader M, Degen B, Kersten B (2016) NGS-based development of molecular markers for determining continental origin of white oaks. In: 4th Plant Genomics Congress : Poster Presentation Abstract ; London, UK ; 9.5.2016-10.5.2016. London, p 1

  49. 48

    Mader M, Le Paslier M-C, Bounon R, Berard A, Faivre Rampant P, Fladung M, Leplé J-C, Kersten B (2016) Whole-genome draft assembly of Populus tremula x P. alba clone INRA 717-1B4. Silvae Genetica 65(2):74-79, DOI:10.1515/sg-2016-0019

    https://literatur.thuenen.de/digbib_extern/dn059214.pdf

  50. 49

    Kersten B, Faivre Rampant P, Mader M, Le Paslier M-C, Bounon R, Berard A, Vettori C, Schroeder H, Leple J-C, Fladung M (2015) Genome sequences of Populus tremula chloroplast and mitochondrion: implications for holistic poplar breeding : accession KP861984 [online]. Bethesda MD: GenBank, National Center for Biotechnology Information, US National Library of Medicine, 74 p, zu finden in <http://www.ncbi.nlm.nih.gov/nuccore/KP861984> [zitiert am 07.12.2015]

  51. 50

    Kersten B, Faivre Rampant P, Mader M, Le Paslier M-C, Bounon R, Berard A, Vettori C, Schroeder H, Leple J-C, Fladung M (2015) Genome sequences of Populus tremula chloroplast and mitochondrion: implications for holistic poplar breeding : accession KT337313 [online]. Bethesda MD: GenBank, National Center for Biotechnology Information, US National Library of Medicine, 225 p, zu finden in <http://www.ncbi.nlm.nih.gov/nuccore/936227452/> [zitiert am 07.12.2015]

  52. 51

    Kersten B, Faivre Rampant P, Mader M, Le Paslier M-C, Bounon R, Berard A, Vettori C, Schroeder H, Leple J-C, Fladung M (2015) Genome sequences of Populus tremula chloroplast and mitochondrion: implications for holistic poplar breeding : accession KT429213 [online]. Bethesda MD: GenBank, National Center for Biotechnology Information, US National Library of Medicine, 224 p, zu finden in <http://www.ncbi.nlm.nih.gov/nuccore/938485524/> [zitiert am 07.12.2015]

  53. 52

    Kersten B, Faivre Rampant P, Mader M, Le Paslier M-C, Chauveau A, Berard A, Vettori C, Leple J-C, Fladung M (2015) Genome sequences of Populus tremula chloroplast and mitochondrion: implications for holistic poplar breeding : accession KT780870 [online]. Bethesda MD: GenBank, National Center for Biotechnology Information, US National Library of Medicine, 74 p, zu finden in <http://www.ncbi.nlm.nih.gov/nuccore/KT780870> [zitiert am 07.12.2015]

    Nach oben